Grade 9/10 Math Circles
 October 25, 2023
 Graph Theory

Warm-up: Bridges of Königsberg

Wikimedia Commons

Let's explore Königsberg!

Find a walk that allows us to cross each bridge EXACTLY once.
We must stay within the city (no going outside the image).

Why Graph Theory?

Graph Theory has applications to many real-world fields: transportation of supplies, chemistry, traffic flow, social networks, computer networks, knot theory, linguistics, and more! But, above all, graph theory is a very cool branch of mathematics that is fun to explore.

Basic Definitions

Before we get too far in, we need a few definitions.
Definition 1. A set is a collection of objects with:

1. No repeats
2. No order

Example: Sets

Each of the following are examples of sets:

- $\{a, b, c\}$
- $\{\bigcirc, \square, \triangle, \star\}$
- $\{-1,1,2,4,5,0\}$

Note 1: $\{1,1,2,3\}=\{1,2,3\}$ Note 2: $\{1,2,3\}=\{2,3,1\}=\{3,2,1\}$
Definition 2. A graph is a set of vertices paired with a set of unordered pairs of distinct vertices, called edges.

```
Example: Graph
\(G=(V, E)\)
\(V=\{1,2,3,4,5\}\)
\(E=\{\{1,2\},\{1,5\},\{2,3\},\{2,4\},\{3,4\},\{3,5\},\{4,5\}\}\)
```

Draw a visual representation below!

Definition 3. A vertex is a neighbour of another vertex if there is an edge between them.

Example: Neighbours

In the graph, vertex 1 and vertex 2 are neighbours. Vertex 1 and vertex 3 are not.

Exercise 1

Create a 'word graph', where the vertices are:

- Bat
- Cot
- Pan
- Pin
- Pot
- Rot
- Cat
- Mat
- Pat
- Pit
- Rat
- Sit
and two vertices are neighbours if they differ by only one letter.

Note 3: We are only going to consider simple graphs today:

- No edge direction
- No duplicate edges
- No loops (edges which go back to the same vertex)

Definition 4. Two graphs G_{1} and G_{2} are isomorphic if it is possible to relabel G_{1} to get G_{2}.

Definition 5. An isomorphism is a map which defines the relabelling of a graph.

Example: Graph Isomorphisms

For:

A corresponding isomorphism is $1=a, 2=b, 3=c, 4=d$.

Definition 6. The degree of a vertex is the number of edges which connect to the vertex.

Example: Degree

For:

$\operatorname{deg}(1)=5, \operatorname{deg}(2)=3, \operatorname{deg}(3)=\operatorname{deg}(4)=\operatorname{deg}(5)=4$ and $\operatorname{deg}(6)=2$

Finding an isomorphism:

- Check the number of vertices is the same
- Check vertex degree: a vertex can only be paired with a vertex of same degree
- Check already re-labelled neighbours: a vertex must have the same (corresponding) neighbours after re-labelling

Exercise 2

Show that the following two graphs are isomorphic

Theorem 7. Handshaking Lemma. For any graph G, the sum of the degrees of all vertices is equal to 2 times the number of edges.

Example: Handshaking Lemma

For:

$\operatorname{deg}(1)=3, \operatorname{deg}(2)=2, \operatorname{deg}(3)=2$ and $\operatorname{deg}(4)=3$.
Then, the sum of the degrees is $10=2 * 5=2$ times the number of edges.

Proof: Note that each edge has two ends. When we sum the degrees, each edge end is counted once, meaning that each edge is counted twice.

Example: Applying Handshaking Lemma 1

Find the number of edges in a graph with vertices $\{a, b, c, d, e\}$ who have degrees $3,4,3,2,2$, respectively.
Then:

$$
\begin{aligned}
3+4+3+2+2 & =2 *(\text { number of edges }) \quad(\text { by } \mathrm{HL}) \\
\Longrightarrow 14 & =2 *(\text { number of edges }) \\
\Longrightarrow \text { number of edges } & =7
\end{aligned}
$$

Example: Applying Handshaking Lemma 2

Find the number of vertices in a graph where all vertices have degree 3 and the graph has 51 edges.
Then, $3 *$ (number of vertices) $=$ sum of degrees.

$$
\begin{gathered}
\Longrightarrow 3 *(\text { number of vertices })=2 * 51 \quad \text { (by HL) } \\
\Longrightarrow 3 *(\text { number of vertices })=102 \\
\Longrightarrow \text { number of vertices }=\frac{102}{3}=34
\end{gathered}
$$

Exercise 3

Find a graph with vertex set $\{a, b, c, d\}$ where $\operatorname{deg}(a)=1, \operatorname{deg}(b)=3, \operatorname{deg}(c)=2, \operatorname{deg}(d)=1$.

Theorem 8. The number of vertices of odd degree in a graph is even.

Definition 9. A walk is a sequence of vertices and edges that lead from one vertex to another.

Example: Walk

For:

$1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 4 \rightarrow 5$ is a walk 1 to 5 .

Definition 10. A path is a walk where we do not return to the same vertex twice.

Example: Path

For:

$1 \rightarrow 2 \rightarrow 3 \rightarrow 5$ is a path from 1 to 5 .
$1 \rightarrow 3 \rightarrow 1 \rightarrow 5$ is not a path.

Definition 11. A cycle is a path which starts and ends at the same vertex.

Example: Cycle

For:
What are the other cycles in this graph?

$1 \rightarrow 3 \rightarrow 5 \rightarrow 1$ is a cycle.

Definition 12. The tree is a graph that is connected (all vertices have paths to each other) and has no cycles.

Definition 13. A weighted graph is a graph where each of the edges have weights or cost assigned.

Definition 14. A subgraph is a graph whose edges and vertices are all part of a possibly larger graph.

Example: Subgraph

Subgraph:

Definition 15. A spanning tree is a subgraph with the following properties:

- it is a tree
- all vertices from the original graph must be included

Definition 16. A minimum spanning tree (MST) is a spanning tree of lowest cost.

Example: MST

Graph:

Minimum Spanning Tree:

MST with cost $2+4+1+2+1=10$

Exercise 4

Find an MST of the graph below:

Prim's Algorithm

Prim's Algorithm is a way of finding an MST of a graph.

1. Pick a vertex in your graph - it is the start of our spanning tree
2. Consider all edges that are connected to exactly one vertex in the current tree
3. Pick the edge with the smallest weight and add it, along with the new vertex, to the tree
4. Repeat steps 2-3 until all vertices are in the tree

Exercise 5

Use Prim's Algorithm to find a different MST of the graph below:

